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SPHERICALLY-SYMMETRIC SHOCK WAVE IN A DILATANT MEDIUM* 

S.G. ARTYSHEV, E.K. BOKOVAIA and V;A. BOKOVOI 

The problem is examined of the expansion of a spherical region filled withagaswith 

high initial pressure, in a continuous medium with dilatancy, by which is meantthe 

kinematic connection between the velocities of the dilatationalandthe maximal tang- 

ential deformations. The change in the medium's density behind the shock wave's 

front takes place only due to this kinematic connection. The model given was exam- 

ined in a number of papers (/l-33/ and others) mainly for describing the behavior 

of certain soils in an underground explosion. Previously the soil density behind 

the shock wave's front had been reckoned to be constant /4-6/. Ananalogousproblem 

is examined below in the case when the dilatancy velocity coefficientis apiecewise- 

constant function of the medium's density. 

We consider an expanding spherical cavity (a cavern) having an initial radius o,, and an 

initial pressure PkO. Going ahead of the cavity's expansion, a shock wave is propagated over 

the medium, behind whose front we assume the fulfillment of Coulomb's law 

($ - a,)/2 = - k + m (or + o,)/Z (1) 

where k and m are known constants, or and a'p are the stresses in the radial and orthogonal to 

its directions, respectively. The medium between the cavity and the shock wave's front is des- 

cribed by the momentum- and mass-preserving equations and the dilatancy equation 

P (aulati-uaular) = ar5,lar + 2 (or - om)lr 
@at + uaplar + p (adar+ 2ulr) = 0 
ada7 + 2x/r = n (P) (u/r - adar) 

(2) 

Here P is the medium's density, IJ is the mass velocity, r is the radius, t is time and A (P) 
is the dilatancy velocity. At the wavefront we begin with the mass- and momentum-preservation 

laws 
Ut (t) = e, (1) R' (t), P* (t) - PO = PO% (t) R’a (t) (3) 

Here R(t) and R'(t) are the radius and the velocity of the shock wave's front, po=p,,gh is the 

lithostatic pressure at depth h,el= 1 -ppolp, is the compression shockatthefront, p*(t)= -o,,(t) 

is the pressure at the front. The asterisk denotes the values of quantities at the shockwave's 

front, while the subscript zero denotes the values in the unperturbed medium. 

We neglect the density's dependence on temperature; therefore, the system of Eqs.(2) and 

(3) can be solved without bringing in the energy balance equation. It is convenient to write 

Eqs.(2)in the Lagrangian coordinates (rO,t). Denoting the new functions of the variables (r,,,~) 

by the same letters u,p,o,,r, with due regard to (1) we obtain the fulfillmentoftheequations 

(4) 

in the region behind the front. We take it that the rock being destroyed at the front reaches 

its own limit compression (p.(t) = const), while the dilatancy velocity A (p)is approximated by a 

piecewise-constant function 

A = A1> Pl< P < P*: .i = Aa* Ps < P < PC II. = 0, P < PI (5) 

where h,,A,,p,,p, are constants. The value A=0 corresponds to the.case of an incompressible 
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medium, which is usually postulated in papers on soils C/4-6/ and others), while when .%>o 
the last equation in (2) or the last equation in (4), equivalent to it in the Lagrangian co- 
ordinates, describes the mellowing of the medium. The assumptions made permit us to passfrom 
the system of partial differential Eqs.(4) to an ordinary differential equation in the front's 
radius N (1) (the camouflet equation). 

We denote by a(r) the cavity's radius, by tr and ~(1) the time and the radius for which 
the density pz first is achieved, by ta and rz(t) the time and the radius for whichthedensity 
~1~ first is achieved. The corresponding Lagrangian coordinates are a, = con&, rOl: (I), Pan_ The 
whole medium is separated into domains: a domain Do in which p= PO, r>R 0): a domain Jf,inwhich 
F)><I'< p*. a(Q<r<I( tr) when t<tl and r,O)<r<R Ct) when t>& a domain D, in which pa<. p< 
p,, a (rf < P < r,(t) when tl< 1 < f~ and ra (t) < r<. rX it) when t > t 2; a domain D,in which p = 112‘ n if) c- 
r < r2 0) when i > t2. This separation is shown schematically in Fig.1. 

Fig.1 Fig.2 Fig.3 

In each of the domains delineated the dilatancy equation (the last equation in (4)) can be 
written as 

a (p~'+*r~")l~1 = 0 

Integration yields the following expression for the density 

I' V", t) -J 

1 

I '$1 in D, 

I'* (r,,k (F", r))"-"' in U, 
P1(Ir,r&(ru, E))'-"" 3.n I), 

(6) 

f': in D, 
,li = (2 - A\$)/ (1 -t_ J\i), i = 1, 2, k, = (,/ply*-nJ 

Expression (6) helps us find the connection between the Lagrangian and the Euler coordinatesof 
the points at which the dilatancy velocity changes: 

rl fr} = Q-@~ (1), r, [t) = k,k@J* (t); ka = {p~/~)*~(~-~-~ (7) 

Integration of the equation of continuity (the second equation in (4)) enables us to express 
the Euler coo?dinate in terms of rO and R (t): 

From formulas 17) and (8) it follows that 

FOX (t) = C,R (0, roe (t) 2 %C1 R 0) (9) 

Substitution into the left-hand side of equalities (9) the value of the cavity's initialradius 
o yields equations in t,and t2. The functions rl(t) and ral(t) are defined for t>,rl, while the 
functions r&) and raa(t), for t>,ta. Differentiation of formulas (8) with respect to time leads 
to an expression for the medium's mass velocity 

0 

u(r,,t)=: [ 

in D, 

tlflni (l) It’ V)/P (f”, f) in& 
e kn‘+$**Rn* (t) R‘ (r)/P(rO, t) 
~~k~~k~~~,~~~R~ {r) R‘ (~)~~(r~, t) 

in D, (10) 
in D8 
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The equation of motion of the shock wave's front is obtained by integrationofthefirstequal- 

ity in (4) with respect to the Lagrangian radius from r,, to R(t) with due regard to formulas 

(3), (8) and (10). We introduce the following dimensionless variables: 

7 = t/g, 3% = CJ~o, I (%a, r) = 7 b0.% Bt,h n h T) = P (wo. fW/m Y W = R @~,/ao 

A unit of time is j? = a&~~/R~oj'~'. In the dimensionless form the motion of the shock wave's 

front is described by the equation 

A (zdY)YY” +- R (z,/Y)Y’~ + C (n, Q/Y) = 0 (11) 

The coefficients A,B,C in Eq.(ll), depending on z=z,lY, take the values Ai,Bi,Gi, respectiv- 

ely, in the domains Di(i= i,2,3) 

A, (z) = A, (cIc,J + esk~-.-lk;-‘c~c2a+2 &;-“‘2 (FJ dt 

xl(cre.) 

Setting zO= 1 and prescribing the pressure variation law at exploding cavity s (iv r). Sq.(ll) 
can be used for the numerical calculation of the dimensionless radius Y(T) under the initial 
conditions 

Y (0) = 1, Y' (0) = ((1 - JlolRko)/el)"' 

After Y(z)is found, Eq.(ll) yields, with the aid of (9), an explicit formula for the computa- 
tion of the dimensionless pressure n(z,,r) over the whole zone over which the wave passed, l< 

IO < Y (7). The pressure at the cavity's boundary was taken in the form 

s (i, r) = (a& (ao. 1))” E I/-” (i, 7) 
which corresponds to an assumption on the adiabatic expansion of the cavern with a constant 
adiabat y. 

Figs.2 and 3 show the results of certain calculations with the following initial 

m = 0.45, k = 34 kpa, PO = 2.5 Mg/m3, p1 = 2.65 Mg/m3, Pa= 2.6 Mg/m3, 

data: 

e, = 0.2, A, = 0.14. A* = 0.07, ug = 

7m, pho= 6.2 GPa, y= 1.5. The unperturbed lithostatic pressure pO= 10; 17.5; 25MPa,whichrough- 
ly correspond to embedding depths of 400, 700 and 1000 m (the solid, dashed and dash-dotted 
curves, respectively). The dependence of the dimensionless front radius Y=R/a, and of the 

dimensionless cavity radius y=aia, on time t (ms) is given in Fig.2. The mellowing of the 
rock being exploded at the expense of dilatancy and the dependence of the dimensionless pres- 
sure measured in units of (~/p&10-~ on the dimensionless Euler radius r/a, are shown in Fig. 
3 (curves 1.2,3 relate to the instants 0.8, 8.8 and 49 ms, 'respectively). 

Relations (6)- (11) are generalized to the case of an arbitrary number of "steps" in (5) 
for the piecewise-constant approximation of A (P). 
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